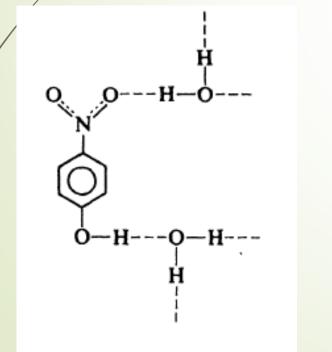

PHENOLS

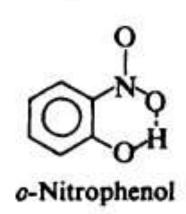
Department of Pharmaceutical Chemistry

Dr. Husam Hamza

Structure and nomenclature

- Phenols are compounds of the general formula ArOH, where Ar is phenyl, substituted phenyl, or one of the other aryl groups (e.g., naphthyl)
- Phenols differ from alcohols in having the -OH group attached directly to an aromatic ring
- generally named as derivatives of the simplest member of the family, phenol, The methylphenols are given the special name of *cresols*

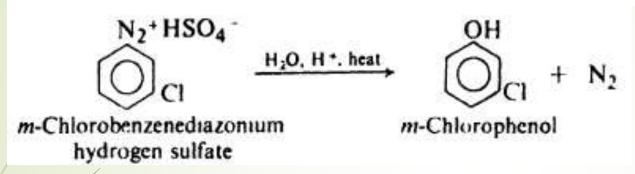

Physical properties


- The simplest phenols are liquids or low-melting solids
- > because of hydrogen bonding, they have quite high boiling points
- > somewhat soluble in water (9 g per 100 g of water), presumably because of hydrogen bonding with the water; most other phenols are essentially insoluble in water.

	PROPERTIES OF THE NITROPHENOLS		
	B.p., °C at 70 mm	Solub., g/100 g H ₂ O	as of
o-Nitrophenol	100	0.2	Volatile in steam
m-Nitrophenol	194	1.35	Non-volatile in steam
p-Nitrophenol	dec.	1.69	Non-volatile in steam

> m- and p-isomers. They have very high boiling points because of intermolecular hydrogen bonding

Their solubility in water is due to hydrogen bonding with water molecules



Intramolecular hydrogen bonding: chelation

Preparation

1. Hydrolysis of diazonium salts.

$$ArN_2^+ + H_2O \longrightarrow ArOH + H^+ + N_2$$

Reactions

- 1/Acidity. Salt formation.

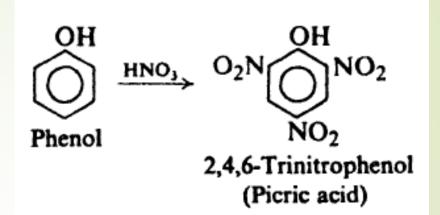
ArOH +
$$H_2O \rightleftharpoons ArO^- + H_3O^+$$
 Stronger Weaker

Phenols stronger acids than water, but considerably weaker acids than the

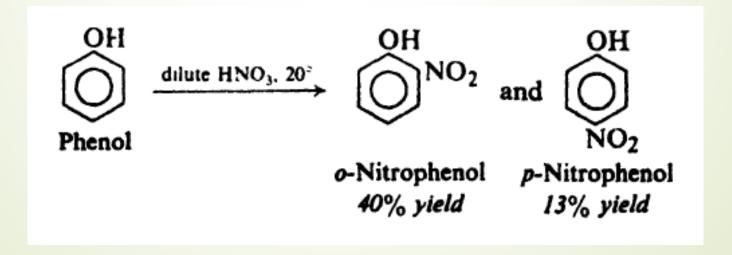
carboxylic acids

2. Ether formation. Williamson synthesis.

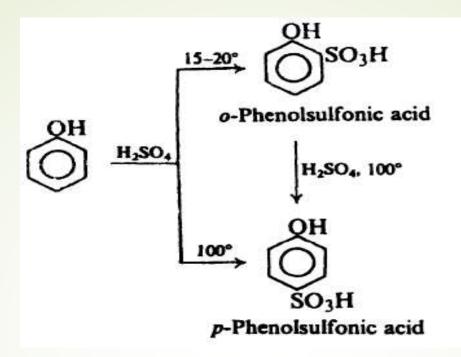
It can be used to make unsymmetrical ethers as well as symmetrical ethers, and aryl alkyl ethers


3. Ester formation.

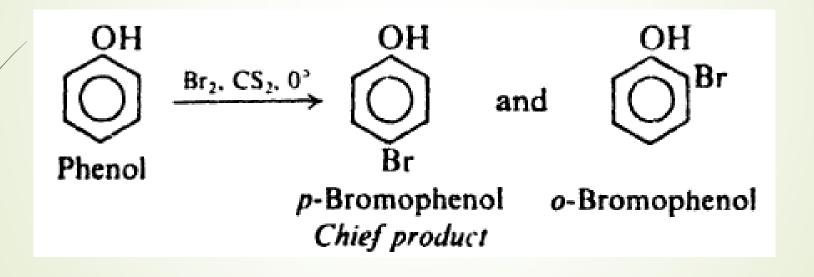
Phenols are usually converted into their esters by the action of acids, acid chlorides, or anhydrides


4. Ring substitution.

(a) Nitration.


Phenol is converted by concentrated nitric acid into 2,4,6-trinitrophenol (picric acid)

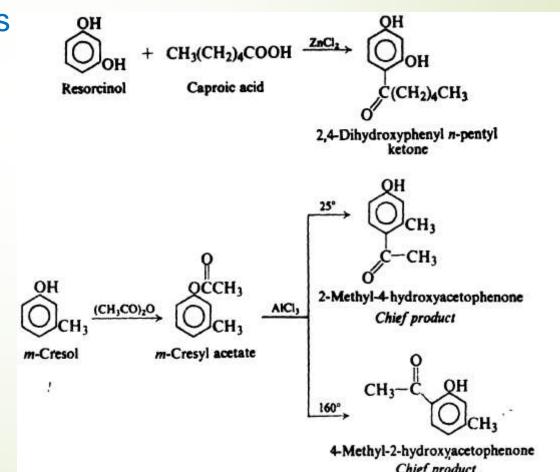
To obtain mononitrophenols, it is necessary to use dilute nitric acid at a low temperature



(b) Sulfonation.

- (c) Halogenation.
- Treatment of phenols with aqueous solutions of bromine results in replacement of every hydrogen ortho or para to the OH group

If halogenation is carried out in a solvent of low polarity, such as chloroform, carbon tetrachloride, or carbon disulfide, reaction can be limited to monohalogenation. For example:



(d) Friedel-Crafts alkylation.

OH
$$CH_3$$
 OH CH_3 OH

Phenol CH_3 CH $_3$ CH $_3$ CH $_3$ CH $_3$ CH $_3$ CH $_3$ CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

(e) Friedel-Crafts acylation. Fries rearrangement

(f) Nitrosation.

(g) Coupling with diazonium salts.

$$ArN_2^+ + Ar'H \longrightarrow Ar-N=N-Ar' + H^+$$
An azo compound

(h) Carboxylation- Kolbe reaction

➤ Treatment of the salt of a phenol with carbon dioxide brings about substitution of the carboxyl group, -COOH, for hydrogen of the ring. This reaction is known as the **Kolbe reaction**